What is the standard form of a polynomial #(9a^2-4-5a)-(12a-6a^2+3)#?

2 Answers
Jul 5, 2017

See a solution process below:

Explanation:

First, remove all of the terms from parenthesis. Be careful to handle the signs of each individual term correctly:

#9a^2 - 4 - 5a - 12a + 6a^2 - 3#

Next, group like terms in descending order of the power of their exponents:

#9a^2 + 6a^2 - 5a - 12a - 4 - 3#

Now, combine like terms:

#(9 + 6)a^2 + (-5 - 12)a + (-4 - 3)#

#15a^2 + (-17)a + (-7)#

#15a^2 - 17a - 7#

Jul 5, 2017

#15a^2-17a-7#

Explanation:

#(9a^2-4-5a)-(12a-6a^2+3)#

#:.=9a^2-4-5a-12a+6a^2-3#

#:.=15a^2-17a-7#