What is the surface area of the solid created by revolving f(x) = (2x-2)^2 , x in [1,2]f(x)=(2x−2)2,x∈[1,2] around the x axis?
1 Answer
Explanation:
The formula for the surface area of the solid created by rotating a curve
A=2piint_a^bf(x)sqrt(1+(f'(x))^2)dx
We have
A=2piint_1^2 4(x-1)^2sqrt(1+(8(x-1))^2)dx
color(white)A=8piint_1^2(x-1)^2sqrt(64(x-1)^2+1)dx
Let
Let's momentarily leave out the bounds and return to the bounds once we complete integration.
A=8piint1/64tan^2thetasqrt(tan^2theta+1)(1/8sec^2thetad theta)
color(white)A=pi/64inttan^2thetasec^3thetad theta
Using
A=pi/64intsec^5thetad theta-pi/64intsec^3thetad theta
Unfortunately, these integrals are both quite messy, so attached are links to finding both the integrals:
- [Derivation]
intsec^3thetad theta=1/2secthetatantheta+1/2lnabs(sectheta+tantheta) - [Derivation]
intsec^5thetad theta=1/4sec^3thetatantheta+3/8secthetatantheta+3/8lnabs(sectheta+tantheta)
Thus,
A=pi/64(1/4sec^3thetatantheta-1/8secthetatantheta-1/8lnabs(sectheta+tantheta))
color(white)A=pi/512(2sec^3thetatantheta-secthetatantheta-lnabs(sectheta+tantheta))
From
A=pi/512(2(8(x-1))(64(x-1)^2+1)^(3/2)-8(x-1)sqrt(64(x-1)^2+1)-lnabs(sqrt(64(x-1)^2+1)+8(x-1)))
Wow. Now apply the bounds from
A=pi/512(16(65^(3/2))-8sqrt65-lnabs(sqrt65+8))-pi/512(0-0-ln1)
color(white)A=pi/512(1032sqrt65-ln(sqrt65+8))