What is the surface area of the solid created by revolving f(x) = (2x-2)^2 , x in [1,2]f(x)=(2x2)2,x[1,2] around the x axis?

1 Answer
Aug 18, 2017

pi/512(1032sqrt65-ln(sqrt65+8))π512(103265ln(65+8))

Explanation:

The formula for the surface area of the solid created by rotating a curve ff around the xx-axis on x in[a,b]x[a,b] is given by:

A=2piint_a^bf(x)sqrt(1+(f'(x))^2)dx

We have f(x)=(2x-2)^2=4(x-1)^2, with a derivative of f'(x)=8(x-1). So, the surface area in question is:

A=2piint_1^2 4(x-1)^2sqrt(1+(8(x-1))^2)dx

color(white)A=8piint_1^2(x-1)^2sqrt(64(x-1)^2+1)dx

Let x-1=1/8tantheta. This implies that 64(x-1)^2+1=tan^2theta+1=sec^2theta. Differentiating, it also implies that dx=1/8sec^2thetad theta.

Let's momentarily leave out the bounds and return to the bounds once we complete integration.

A=8piint1/64tan^2thetasqrt(tan^2theta+1)(1/8sec^2thetad theta)

color(white)A=pi/64inttan^2thetasec^3thetad theta

Using tan^2theta=sec^2theta-1:

A=pi/64intsec^5thetad theta-pi/64intsec^3thetad theta

Unfortunately, these integrals are both quite messy, so attached are links to finding both the integrals:

  • [Derivation] intsec^3thetad theta=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)
  • [Derivation] intsec^5thetad theta=1/4sec^3thetatantheta+3/8secthetatantheta+3/8lnabs(sectheta+tantheta)

Thus, intsec^5thetad theta-intsec^3thetad theta=1/4sec^3thetatantheta-1/8secthetatantheta-1/8lnabs(sectheta+tantheta) and

A=pi/64(1/4sec^3thetatantheta-1/8secthetatantheta-1/8lnabs(sectheta+tantheta))

color(white)A=pi/512(2sec^3thetatantheta-secthetatantheta-lnabs(sectheta+tantheta))

From x-1=1/8tantheta we see that tantheta=8(x-1), which implies that sectheta=sqrt(tan^2theta+1)=sqrt(64(x-1)^2+1).

A=pi/512(2(8(x-1))(64(x-1)^2+1)^(3/2)-8(x-1)sqrt(64(x-1)^2+1)-lnabs(sqrt(64(x-1)^2+1)+8(x-1)))

Wow. Now apply the bounds from x=1 to x=2. I'm not gonna write out the biggest part since it just takes up too much space:

A=pi/512(16(65^(3/2))-8sqrt65-lnabs(sqrt65+8))-pi/512(0-0-ln1)

color(white)A=pi/512(1032sqrt65-ln(sqrt65+8))