What is the surface area of the solid created by revolving f(x)=ex2,x[2,7] around the x axis?

1 Answer
Nov 3, 2016

The area is =π8((4(ln(e14+4)+e7)+e7e14+4))π8(4(ln(e4+4)+e2)+e2e4+4))

Explanation:

The volume of a small disc is dS=πydr
and dr=(dx)2+(dy)2
dS=πy(dx)2+(dy)2=πy1+(dydx)2dx
So y=ex2dydx=ex2
so dS=πex21+e2x4dx
dS=πex44+e2xdx
so S=π4ex4+e2xdx
let u=ex du=exdx
S=π44+u2du
u=2tanvdu=sec2u(dv)
and 4tan2v+4=4sec2v
S=4π4sec3vdv=π(12secvdv+secvtanv2)
π((ln(tanv+secv)2)+secvtanv2)
S=π8(4(ln(e2x+4)+ex)+exe2x+4))72
=π8((4(ln(e14+4)+e7)+e7e14+4))π8(4(ln(e4+4)+e2)+e2e4+4))