What is the surface area of the solid created by revolving f(x) = (x-9)^2 , x in [2,3] around the x axis?

1 Answer
Aug 29, 2017

(-867pisqrt145)/8+(2751pisqrt197)/16+pi/32ln((sqrt197-14)/(sqrt145-12))

Explanation:

The surface area of the solid generated by rotating f around the x-axis on x in[a,b] is given by:

S=2piint_a^bf(x)sqrt(1+(f'(x))^2)dx

Here, f(x)=(x-9)^2, so f'(x)=2(x-9). We're working on the interval x in[2,3]. Thus, our surface area is given by:

S=2piint_2^3(x-9)^2sqrt(1+4(x-9)^2)dx

Let u=x-9. This will make what we need to do more obvious by making the integrand not so ugly. Note that du=dx, so this is an easy substitution. Don't forget to change the bounds by plugging x=2 and x=3 into u=x-9.

S=2piint_(-7)^(-6)u^2sqrt(1+4u^2)du

Now we should use the trigonometric substitution u=1/2tantheta. This was chosen because 1+4u^2=1+tan^2theta=sec^2theta. This substitution also implies that du=1/2sec^2thetad theta. Let's ignore the bounds for now and come back later:

I=2piintu^2sqrt(1+4u^2)du

I=2piint1/4tan^2thetasqrt(1+tan^2theta)(1/2sec^2thetad theta)

I=pi/4inttan^2thetasec^3thetad theta

Rewrite tan^2theta using tan^2theta=sec^2theta-1:

I=pi/4int(sec^5theta-sec^3theta)d theta

These are two known integrals. They can be found using iterative integration by parts and are quite cumbersome. I recommend looking them up or committing them to memory, since they're fairly common in trigonometric substitution questions:

  • [Derivation] intsec^5thetad theta=1/4sec^3thetatantheta+3/8secthetatantheta+3/8lnabs(sectheta+tantheta)
  • [Derivation] intsec^3thetad theta=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)

Then:

I=pi/4(1/4sec^3thetatantheta-1/8secthetatantheta-1/8lnabs(sectheta+tantheta))

Let's revert to the variable u, which our definite integral is in. Recall that tantheta=2u so sectheta=sqrt(1+tan^2theta)=sqrt(1+4u^2).

I=pi/16(1+4u^2)^(3/2)(2u)-pi/32sqrt(1+4u^2)(2u)-pi/32lnabs(sqrt(1+4u^2)+2u)

I=pi/8u(1+4u^2)^(3/2)-pi/16usqrt(1+4u^2)-pi/32lnabs(sqrt(1+4u^2)+2u)

Thus:

S=[pi/8u(1+4u^2)^(3/2)-pi/16usqrt(1+4u^2)-pi/32lnabs(sqrt(1+4u^2)+2u)]_(-7)^(-6)

Moving through this quickly:

S=(-3pi)/4(145)^(3/2)+(3pi)/8sqrt145-pi/32lnabs(sqrt145-12)-((-7pi)/8(197)^(3/2)+(7pi)/16sqrt197-pi/32lnabs(sqrt197-14))

S=pisqrt145(3/8-3/4(145))+pisqrt197(7/8(197)-7/16)+pi/32ln((sqrt197-14)/(sqrt145-12))

S=(-867pisqrt145)/8+(2751pisqrt197)/16+pi/32ln((sqrt197-14)/(sqrt145-12))

Sapprox3481.65496968