What is the surface area of the solid created by revolving f(x) = xe^-x-xe^(x) , x in [1,3]f(x)=xexxex,x[1,3] around the x axis?

2 Answers
Jan 13, 2016

Determine the sign, then integrate by parts. Area is:

A=39.6345A=39.6345

Explanation:

You have to know whether f(x)f(x) is negative or positive in [1,3][1,3]. Therefore:

xe^-x-xe^xxexxex

x(e^-x-e^x)x(exex)

To determine a sign, the second factor will be positive when:

e^-x-e^x>0exex>0

1/e^x-e^x>01exex>0

e^x*1/e^x-e^x*e^x>e^x*0ex1exexex>ex0

Since e^x>0ex>0 for any x in(-oo,+oo)x(,+) the unequality doesn't change:

1-e^(x+x)>01ex+x>0

1-e^(2x)>01e2x>0

e^(2x)<1e2x<1

lne^(2x) < ln1lne2x<ln1

2x<02x<0

x<0x<0

So the function is only positive when x is negative and vice versa. Since there is also an xx factor in f(x)f(x)

f(x)=x(e^-x-e^x)f(x)=x(exex)

When one factor is positive, the other is negative, so f(x) is always negative. Therefore, the Area:

A=-int_1^3f(x)dxA=31f(x)dx

A=-int_1^3(xe^-x-xe^x)dxA=31(xexxex)dx

A=-int_1^3xe^-xdx+int_1^3xe^xdxA=31xexdx+31xexdx

A=-int_1^3x*(-(e^-x)')dx+int_1^3x(e^x)'dx

A=int_1^3x*(e^-x)'dx+int_1^3x(e^x)'dx

A=[xe^-x]_1^3-int_1^3(x)'e^-xdx+[x(e^x)]_1^3-int_1^3(x)'e^xdx

A=[xe^-x]_1^3-int_1^3e^-xdx+[x(e^x)]_1^3-int_1^3e^xdx

A=[xe^-x]_1^3-[-e^-x]_1^3+[x(e^x)]_1^3-[e^x]_1^3

A=(3e^-3-1*e^-1)+(e^-3-e^-1)+(3e^3-1*e^1)-(e^3-e^1)

A=3/e^3-1/e+1/e^3-1/e+3e^3-e-e^3+e

A=4/e^3 -2/e+2e^3

Using calculator:

A=39.6345

Area = 11,336.8 square units

Explanation:

the given f(x)=xe^-x -xe^x

for simplicity let f(x)=y

and y=xe^-x -xe^x

the first derivative y' is needed in the computation of the surface area.

Area = 2pi int_1^3 y ds

where ds=sqrt(1+ (y')^2) dx

Area = 2pi int_1^3 y sqrt(1+ (y')^2) dx

Determine the first derivative y':

differentiate y=x(e^-x - e^x) using the derivative of product formula

y' = 1*(e^-x-e^x)+x*(e^-x *(-1)-e^x)

y'=e^-x - e^x -x*e^-x -x*e^x

after simplification and factoring, the result is

the first derivative y'=e^-x*(1-x)-e^x*(1+x)

Compute now the Area:

Area = 2 pi int_1^3 y ds

Area = 2pi int_1^3 y sqrt(1+ (y')^2) dx

Area
= 2pi int_1^3 x(e^-x - e^x) sqrt(1+ (e^-x*(1-x)-e^x*(1+x))^2 dx

For complicated integrals like this, we may use Simpson's Rule:

so that

Area
= 2pi int_1^3 x(e^-x - e^x) sqrt(1+ (e^-x*(1-x)-e^x*(1+x))^2 dx

Area = -11,336.804

this involves the direction of revolution so that there can be negative surface area or positive surface area. Let us just consider the positive value Area = 11336.804 square units