What is the surface area of the solid created by revolving #f(x) = xe^-x-xe^(x) , x in [1,3]# around the x axis?

2 Answers
Jan 13, 2016

Determine the sign, then integrate by parts. Area is:

#A=39.6345#

Explanation:

You have to know whether #f(x)# is negative or positive in #[1,3]#. Therefore:

#xe^-x-xe^x#

#x(e^-x-e^x)#

To determine a sign, the second factor will be positive when:

#e^-x-e^x>0#

#1/e^x-e^x>0#

#e^x*1/e^x-e^x*e^x>e^x*0#

Since #e^x>0# for any #x in(-oo,+oo)# the unequality doesn't change:

#1-e^(x+x)>0#

#1-e^(2x)>0#

#e^(2x)<1#

#lne^(2x) < ln1#

#2x<0#

#x<0#

So the function is only positive when x is negative and vice versa. Since there is also an #x# factor in #f(x)#

#f(x)=x(e^-x-e^x)#

When one factor is positive, the other is negative, so f(x) is always negative. Therefore, the Area:

#A=-int_1^3f(x)dx#

#A=-int_1^3(xe^-x-xe^x)dx#

#A=-int_1^3xe^-xdx+int_1^3xe^xdx#

#A=-int_1^3x*(-(e^-x)')dx+int_1^3x(e^x)'dx#

#A=int_1^3x*(e^-x)'dx+int_1^3x(e^x)'dx#

#A=[xe^-x]_1^3-int_1^3(x)'e^-xdx+[x(e^x)]_1^3-int_1^3(x)'e^xdx#

#A=[xe^-x]_1^3-int_1^3e^-xdx+[x(e^x)]_1^3-int_1^3e^xdx#

#A=[xe^-x]_1^3-[-e^-x]_1^3+[x(e^x)]_1^3-[e^x]_1^3#

#A=(3e^-3-1*e^-1)+(e^-3-e^-1)+(3e^3-1*e^1)-(e^3-e^1)#

#A=3/e^3-1/e+1/e^3-1/e+3e^3-e-e^3+e#

#A=4/e^3 -2/e+2e^3#

Using calculator:

#A=39.6345#

Area = 11,336.8 square units

Explanation:

the given #f(x)=xe^-x -xe^x#

for simplicity let #f(x)=y#

and #y=xe^-x -xe^x#

the first derivative #y'# is needed in the computation of the surface area.

Area #= 2pi int_1^3 y # #ds#

where #ds##=sqrt(1+ (y')^2)# #dx#

Area #= 2pi int_1^3 y # #sqrt(1+ (y')^2)# #dx#

Determine the first derivative #y'#:

differentiate #y=x(e^-x - e^x)# using the derivative of product formula

#y' = 1*(e^-x-e^x)+x*(e^-x *(-1)-e^x)#

#y'=e^-x - e^x -x*e^-x -x*e^x#

after simplification and factoring, the result is

the first derivative #y'=e^-x*(1-x)-e^x*(1+x)#

Compute now the Area:

Area = #2 pi int_1^3 y # #ds#

Area #= 2pi int_1^3 y # #sqrt(1+ (y')^2)# #dx#

Area
#= 2pi int_1^3 x(e^-x - e^x) # #sqrt(1+ (e^-x*(1-x)-e^x*(1+x))^2# #dx#

For complicated integrals like this, we may use Simpson's Rule:

so that

Area
#= 2pi int_1^3 x(e^-x - e^x) # #sqrt(1+ (e^-x*(1-x)-e^x*(1+x))^2# #dx#

Area = -11,336.804

this involves the direction of revolution so that there can be negative surface area or positive surface area. Let us just consider the positive value Area = 11336.804 square units