What is the value of lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2?

1 Answer
Jan 5, 2017

1

Explanation:

We have sum_(k=1)^n(2n+1)/(n+k+1)^2 le sum_(k=1)^n(2n+1)/((n+k+1)^2-1) but

1/((n+k+1)^2-1) = 1/2(1/(n+k)-1/(n+k+2)) and

sum_(k=1)^n1/((n+k+1)^2-1) = 1/2(1/(n+1)+1/(n+2)-1/(2n+1)-1/(2n+2)) or more compactly

sum_(k=1)^n1/((n+k+1)^2-1) =1/4(4n^2+5n)/(2 n^3 + 7 n^2+ 7 n+2)

now we have

lim_(n->oo)sum_(k=1)^n(2n+1)/((n+k+1)^2-1)=lim_(n->oo)1/4((2n+1)(4n^2+5n))/(2 n^3 + 7 n^2+ 7 n+2) = 1

so

lim_(n->oo)sum_(k=1)^n(2n+1)/(n+k+1)^2 le 1

or

lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2-lim_(n->oo)(2n+1)/(n+1)^2 le 1 so

lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2 le 1

Now int_(xi=0)^(xi=n) (d xi)/(n+xi+1)^2 le lim_(n->oo)sum_(k=0)^n 1/(n+k+1)^2

but
int_(xi=0)^(xi=n) (d xi)/(n+xi+1)^2 =1/(n+1)-1/(2n+1) and

lim_(n->oo)(2n+1)(1/(n+1)-1/(2n+1))=1

so

1 le lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2 le 1 and concluding

lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2=1