What is the value of log_2(Pi_(m=1)^2017Pi_(n=1)^2017(1+e^((2 pi i n m)/2017))) ?

3 Answers
Sep 12, 2016

4033

Explanation:

We will show, more generally, that for and odd prime p,
log_2(prod_(m=1)^p prod_(n=1)^p(1+e^((2pi i n m)/p)))=2p-1


Lemma: prod_(k=1)^((p-1)/2)cos^2((kpim)/p) = 1/2^(p-1), m in ZZ^+

Proof: Using the identity sin(2theta) = 2sin(theta)cos(theta), we have cos((kpim)/p) = sin((2kpim)/p)/(2sin((kpim)/p)). Substituting, we get

prod_(k=1)^((p-1)/2)cos^2((kpim)/p) = prod_(k=1)^((p-1)/2)(sin((2kpim)/p)/(2sin((kpim)/p)))^2

=1/2^(p-1)(prod_(k=1)^((p-1)/2)sin((2kpim)/p)/sin((kpim)/p))^2

Note that sin((kpim)/p) = (-1)^(m-1)sin(((p-k)pim)/p). Performing this substitution in the denominator of the above product for each odd k, we get, for some l in ZZ,

1/2^(p-1)(prod_(k=1)^((p-1)/2)sin((2kpim)/p)/sin((kpim)/p))^2 = 1/2^(p-1)((-1)^lprod_(k=1)^((p-1)/2)sin((2kpim)/p)/sin((2kpim)/p))^2

=1/2^(p-1)


Proceeding, we examine the product prod_(m=1)^p prod_(n=1)^p(1+e^((2pi i nm)/p)). Note that e^((2pi i nm)/p) = 1 if n = p or m = p. Thus, for

(m, n) in {(1, p), (2, p), ..., (p-1, p), (p, 1), (p, 2), ..., (p, p)}

we have 1+e^((2pi i nm)/p) = 2

As there are 2p-1 elements of the above set, we may rewrite the product as

prod_(m=1)^p prod_(n=1)^p(1+e^((2pi i nm)/p)) = 2^(2p-1)prod_(m=1)^(p-1)prod_(n=1)^(p-1)(1+e^((2pi i nm)/p))

Making the substitution e^((2pi i mn)/p) = e^(-2pi i m)e^((2pi i mn)/p) = e^((2pi i m(n-p))/p) for n>=(p+1)/2, we can rewrite the second product as

prod_(n=1)^(p-1)(1+e^((2pi i nm)/p)) = prod_(n=-(p-1)/2)^((p-1)/2)(1+e^((2pi i nm)/p))

Pairing factors with corresponding positive and negative values of n, we find

(1+e^((2pi i mn)/p))(1+e^(-(2pi i mn)/p)) = 2 + e^((2pi i mn)/p) + e^(-(2pi i mn)/p)

=2 + (cos((2pimn)/p)+isin((2pimn)/p))+(cos(-(2pimn)/p)+isin(-(2pimn)/p))

=2(1+cos((2pimn)/p))

=>prod_(n=-(p-1)/2)^((p-1)/2)(1+e^((2pi i nm)/p)) = prod_(n=1)^((p-1)/2)2(1+cos((2pimn)/p))

=2^((p-1)/2)prod_(n=1)^((p-1)/2)(1+cos((2pimn)/p))

Using the identities cos^2(theta)+sin^2(theta) = 1 and cos(2theta) = cos^2(theta)-sin^2(theta), we find

1+cos(2(pimn)/p) = 2cos^2((pimn)/p)

=> 2^((p-1)/2)prod_(n=1)^((p-1)/2)(1+cos((2pimn)/p)) = 2^(p-1)prod_(n=1)^((p-1)/2)cos^2((pimn)/p)

=2^(p-1)*1/2^(p-1)" " (by the lemma)

=1

So prod_(n=1)^(p-1)(1+e^((2pi i nm)/p))=1, meaning

prod_(m=1)^p prod_(n=1)^p(1+e^((2pi i nm)/p)) = 2^(2p-1)prod_(m=1)^(p-1)prod_(n=1)^(p-1)(1+e^((2pi i nm)/p))

=2^(2p-1)prod_(m=1)^(p-1)1

=2^(2p-1).

Thus log_2(prod_(m=1)^p prod_(n=1)^p(1+e^((2pi i nm)/p))) = log_2(2^(2p-1)) = 2p-1

The answer to the question is a direct application of the above, substituting p=2017 to arrive at the answer of 2(2017)-1 = 4033

Sep 12, 2016

If N is odd and prime then
log_2(Pi_(m=1)^N(Pi_(n=1)^N(1+e^(2pi i (mn)/N)))) = 2N-1

Explanation:

Analysing the unit roots

z^N-1 = Pi_(n=1)^N(z-e^(2pi i n/N))

if 1 le m_0 le N

z^N-1 = Pi_(n=1)^N(z-e^(2pi i (m_0n)/N))

because

{e^(2pi i m_0/N),e^(2pi i (2m_0)/N),e^(2pi i (3m_0)/N),cdots,e^(2pi i (Nm_0)/N)} is a rotation of
{e^(2pi i 1/N),e^(2pi i 2/N),e^(2pi i 3/N),cdots,e^(2pi i )}

If N is odd and prime, making z = -1 and considering 1 le m_0 < N

-1-1=Pi_(n=1)^N(-1-e^(2pi i (m_0n)/N)) then

2 = Pi_(n=1)^N(1+e^(2pi i (m_0n)/N)) and for m_0=N

Pi_(n=1)^N(1+e^(2pi i (Nn)/N)) = 2^N so

Pi_(m=1)^N(Pi_(n=1)^N(1+e^(2pi i (mn)/N))) = 2^(N-1)2^N = 2^(2N-1)

Finally for N prime

log_2(Pi_(m=1)^N(Pi_(n=1)^N(1+e^(2pi i (mn)/N)))) = 2N-1

Sep 13, 2016

3025/log 2, after self-corrections, in three editions

Explanation:

Heralding the new year 2017, the design of the product is indeed

splendid.

Consider the variation in n, from 1 to 2017, in the inner product.

A typical factor is

1+e^(i((2pimn)/2017))

=1+cos((2pimn)/2017)+i sin((2pimn)/2017)

=2 cos^2((pimn)/2017)+i 2 sin((pimn)/2017)cos((pimn)/2017)

=2 cos((pimn)/2017)(cos((pimn)/2017)+i sin((pimn)/2017))

=2 cos((pimn)/2017)e^(i(pimn)/2017)

So the whole inner product is

2^2017 Picos((pimn)/2017)e^(i(pimn)/2017)

=2^2017 Picos((pimn)/2017)Pie^(i(pimn)/2017)

=2^2017 (Picos((pimn)/2017))e^(i(pim(1+2+...2016+2017))/2017)

=2^2017e^(impi((2017)((2018)/2))/2017)Picos((pimn)/2017)

=2^2017e^(i1009mpi)Picos((pimn)/2017)

=(-1)^m2^2017Picos((pimn)/2017), n varying from 1 to 2017

So, the given expression is

log_2(2^2017Pi((-1)^m(Picos((pimn)/2017)))

=(2017+sum(-1)^m sumcos((pimn)/2017))/log 2
using log_2=log a/log 2

=(2017+sum(-1)^m sumcos((pimn)/2017))/log 2

=(2017+ sum(-1)^mcos((pimn)/2017))/log 2

For now, I break here.I hope that I could report my brief answer, a little later.

Using Lagrange's identity,

the inner sumcos((mnpi)/2017)

= 1/2(1+sin((2017+1/2)mpi/2017)/sin(((mpi/2)/2017)))

=1/2(1+sin(mpi+((mpi/2)/2017))/sin(((mpi/2)/2017)))

=1/2(1+(-1)^m)

= 1, when m is even, and 0, when m is odd.

So, the answer simplifies to

(2017 +( count of even numbers less than 2017) )/log 2

=3025/log 2