What is the vertex form of #y=17x^2+88x+1#?

1 Answer
Jul 30, 2017

#y=17(x+44/17)-1919/17#

Explanation:

Given -

#y=17x^2+88x+1#

Vertex
x-coordinate of the vertex

#x=(-b)/(2a)=(-88)/(2xx 17)=(-88)/34=(-44)/17#

y-coordinate of the vertex

#y=17((-44)/17)^2+88((-44)/17)+1#
#y=17((1936)/289)-3872/17+1#
#y=32912/289-3872/17+1#
#y=(32912-65824+289)/289=(-32623)/289=(-1919)/17#

The vertex form of the equation is

#y=a(x-h)^2+k#

#a=17# coefficient of #x^2#
#h=(-44)/17# x coordinate of the vertex
#k=(-1919)/17# y-coordinate of the vertex

#y=17(x+44/17)-1919/17#