What is the vertex form of #y=4x^2-13x-6#?

1 Answer
Aug 13, 2017

#y = 4(x-13/8)^2-265/16#

Explanation:

#y = 4x^2-13x-6#

# = 4(x^2-13/4xcolor(white)"XXXXXX") -6#

#1/2 * 13/4 = 13/8# and #(13/8)^2 = 169/64#

So inside the parentheses add #169/64#

Outside the parentheses subtract #4 * 169/64 = 169/16#

#y = 4(x^2-13/4+169/64) - 169/16 - 96/16#

To finish, factor the expression in parentheses and simplify the subtraction outside the parentheses.

#y = 4(x-13/8)^2-265/16#