What is the vertex form of #y=x^2+14x+3 #?

2 Answers

#(x+7)^2=y+46#

Explanation:

Given equation:

#y=x^2+14x+3#

#y=x^2+2(7)x+7^2-7^2+3#

#y=(x+7)^2-46#

#(x+7)^2=y+46#

The above equation is in vertex form of upward parabola: #(x-x_1)^2=4a(y-y_1)#

The vertex of parabola :#(x-x_1=0, y-y_1=0)#

#(x+7=0, y+46=0)\equiv(-7, -46)#

Jul 22, 2018

#y=(x+7)^2-46#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#•color(white)(x)y=a(x-h)^2+k#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"to obtain this form "color(blue)"complete the square"#

#y=x^2+2(7)x+49-49+3#

#y=(x+7)^2-46larrcolor(red)"in vertex form"#