What is the vertex form of #y=x^2 + 35x + 36#?

1 Answer
Dec 5, 2017

#y=(x+17.5)^2-270.25#

Explanation:

Given -

#y=x^2+35x+36#

Vertex

#x=(-b)/(2a)=(-35)/(2xx1)=(-35)/2=-17.5#

At #x=-17.5#

#y= (-17.5)^2+35(-17.5)+36#
#y= (-17.5)^2+35(-17.5)+36#
#y=306.25-612.5+36=-270.25#

#(-17.5, -270.25)#

Vertex form

#y=a(x-h)^2+k#

Where -

#a=# coefficient of #x^2#
#h=-17.5#
#k=-270.25#

Then substitute -

#y=(x-(-17.5))^2+(-270.25)#

#y=(x+17.5)^2-270.25#