What is the vertex form of #y=x^2+8x-7#?
1 Answer
Aug 19, 2016
#y=(x+4)^2-23#
Explanation:
Given -
#y=x^2+8x-7#
The vertex form of the equation is -
#y=a(x-h)^2+k#
Where
#a# is the coefficient of#x^2#
#h# is the#x# coordinate of thevertex
#k# is the#y# coordinate of the vertex
Vertex-
#x=(-b)/(2a)=(-8)/2=-4#
At
#y=(-4)^2+8(-4)-7#
#y=16-32-7=-23#
Then-
#a=1#
#h=-4#
#k=-23#
Plug in the values in the formula
#y=a(x-h)^2+k#
#y=(x+4)^2-23#