How do you find x(x+2)(x+9)dx using partial fractions?

1 Answer
Nov 3, 2015

97ln(x+9)27ln(x+2)+constant

Explanation:

The equation to be integrated can be written as:

x(x+2)(x+9)=Ax+2+Bx+9=A(x+9)+B(x+2)(x+2)(x+9)

Equating coefficients

xA(x+9)+B(x+2)=(A+B)x+(9A+2B)

x=(A+B)x

Therefore, dividing by x:

  • A+B=1 (1)

Additionally,

  • 9A+2B=0 (2)

Simultaneous Equations

(2)2×(1)

9A+2B=0 (2)
2A2B=2 (1)

Cancel out the B terms:

7A=2

A=27

Subbing A back into (1):

B=97

Integrating

Subbing A and B back into the original equation:

97(x+9)27(x+2)dx

=97(x+9)dx27(x+2)dx

=971x+9dx271x+2dx

=97ln(x+9)+constant 27ln(x+2)+constant

=97ln(x+9)27ln(x+2)+constant