How do you find the critical points to graph f(x) = 4 sin(x -pi/2 )?

1 Answer
Dec 12, 2015

(pi/2,0), (pi,4), ((3pi)/2,0), (2pi,-4), ((5pi)/2,0)

Explanation:

By the five-point method, you need five points to graph the function, f(x)=4sin(x-pi/2). To find the five points, first find the five points for its parent function e(x)=sinx. Ignore the negative x values and its corresponding y values in the table below.

![bscstudent.buffalostate.edu)

Now that you have the five points for the parent function, use the mapping rule to apply transformations in order to find the five points for the transformed function, f(x)=4sin(x-pi/2).

Mapping rule: (x+color(red)(pi/2),color(blue)4y)

f(x)=4sin(x-pi/2)
Point 1. (0+color(red)(pi/2), color(white)(xxx)(color(blue)4)0) rArr color(white)(xxxxxxxxx)(pi/2,0)
Point 2. (pi/2+color(red)(pi/2), color(white)(xx)(color(blue)4)1) rArr color(white)(xxxxxxxxx)(pi,4)
Point 3. (pi+color(red)(pi/2), color(white)(xxx)(color(blue)4)0) rArr color(white)(axxxxxxxx)((3pi)/2,0)
Point 4. ((3pi)/2+color(red)(pi/2), color(white)(ix)(color(blue)4)(-1)) rArr color(white)(xxxxxx)(2pi,-4)
Point 5. (2pi+color(red)(pi/2), color(white)(xx)(color(blue)4)0) rArr color(white)(xxxxxxxxx)((5pi)/2,0)

The transformed graph would look like:

![https://www.desmos.com/screenshot/6bf4rdat0g](useruploads.socratic.org)

Zoom in to check the five main points shown on the graph.