How do you shift and graph #y=-3+sinx#?

1 Answer
Oct 31, 2014

The period of #sin# is #2pi#.

The #-3# is applied to the result of #sin(x)# which affects the #y# value.

All of the points will be shifted down #3# units.

Rely on your knowledge of the unit circle to figure out the values of sin on the #x# and #y# axis.

#f(0)=-3+sin(0)=-3+0=-3 -> (0,-3)#

#f(pi/2)=-3+sin(pi/2)=-3+1=-2 -> (pi/2,-2)#

#f(pi)=-3+sin(pi)=-3+0=-3 -> (pi,-3)#

#f((3pi)/2)=-3+sin((3pi)/2)=-3-1=-4 -> ((3pi)/2,-4)#

#f(2pi)=-3+sin(2pi)=-3+0=-3->(2pi,-3)#

Enter the function into the calculator

enter image source here

Set the interval, XMIN and MAX , from #[0,2pi] -> 2pi=6.283185307#

enter image source here

Press the GRAPH button

enter image source here