What are the local extrema of f(x)= x^2(x+2)f(x)=x2(x+2)?

1 Answer
Dec 26, 2015

Minima (0, 0)(0,0)
Maxima (-4/3, 1 5/27)(43,1527)

Explanation:

Given-

y=x^2(x+2)y=x2(x+2)
y=x^3+2x^2y=x3+2x2
dy/dx=3x^2+4xdydx=3x2+4x
(d^2y)/(dx^2)=6x+4d2ydx2=6x+4
dy/dx=0=>3x^2+4x=0dydx=03x2+4x=0
x(3x+4)=0x(3x+4)=0
x=0x=0
3x+4=03x+4=0
x=-4/3x=43
At x=0; (d^2y)/(dx^2)=6(0)+4=4>0x=0;d2ydx2=6(0)+4=4>0

At x=0; dy/dx=0;(d^2y)/(dx^2)>0x=0;dydx=0;d2ydx2>0
Hence the function has a minima at x=0x=0

At x=0;y=(0)^2(0+2)=0x=0;y=(0)2(0+2)=0
Minima (0, 0)(0,0)

At x=-4/3; (d^2y)/(dx^2)=6(-4/3)+4=-4<0x=43;d2ydx2=6(43)+4=4<0
At x=-4; dy/dx=0;(d^2y)/(dx^2)<0x=4;dydx=0;d2ydx2<0

Hence the function has a maxima at x=-4/3x=43

At x=-4/3;y=(-4/3)^2(-4/3+2)=1 5/27x=43;y=(43)2(43+2)=1527

Maxima (-4/3, 1 5/27)(43,1527)

Watch the video