How do you multiply e^(( 11 pi )/ 8 i) * e^( pi/2 i ) in trigonometric form?

1 Answer
Jan 3, 2016

Euler formula e^(itheta) = cos(theta)+isin(theta) that would convert to trigonometric form. When we multiply trigonometric form we add the angles and multiply the modulus.

Explanation:

e^((11pi)/8i)*e^((pi/2)i)

e^((11pi)/8i) = cos((11pi)/8) + isin((11pi)/8)

e^((pi/2)i) = cos(pi/2) + isin(pi/2)

e^((11pi)/8i)*e^((pi/2)i)

= (cos((11pi)/8) + isin((11pi)/8))*(cos(pi/2) + isin(pi/2))

=cos((11pi)/8+pi/2)+isin((11pi)/8+pi/2)

=cos((11pi)/8+(4pi)/8)+isin((11pi)/8+(4pi)/4)

=cos((11+4)pi/8) + isin((11+4)pi/8)

=cos((15pi)/8)+isin((15pi)/8)

Note: The question said in trigonometric form so converted to trigonometric form and multiplied. Using Euler's form would be easy multiply and then convert, the choice is yours.

Alternate method:
e^((11pi)/8i)*e^((pi/2)i)
=e^(((11pi)/8+pi/2)i) using exponent rule a^m*a^n=a^(m+n)
=e^(((15pi)/8)i)

Use the Euler's formula

=cos((15pi)/8) + isin((15pi)/8) Answer.