e^((11pi)/8i)*e^((pi/2)i)
e^((11pi)/8i) = cos((11pi)/8) + isin((11pi)/8)
e^((pi/2)i) = cos(pi/2) + isin(pi/2)
e^((11pi)/8i)*e^((pi/2)i)
= (cos((11pi)/8) + isin((11pi)/8))*(cos(pi/2) + isin(pi/2))
=cos((11pi)/8+pi/2)+isin((11pi)/8+pi/2)
=cos((11pi)/8+(4pi)/8)+isin((11pi)/8+(4pi)/4)
=cos((11+4)pi/8) + isin((11+4)pi/8)
=cos((15pi)/8)+isin((15pi)/8)
Note: The question said in trigonometric form so converted to trigonometric form and multiplied. Using Euler's form would be easy multiply and then convert, the choice is yours.
Alternate method:
e^((11pi)/8i)*e^((pi/2)i)
=e^(((11pi)/8+pi/2)i) using exponent rule a^m*a^n=a^(m+n)
=e^(((15pi)/8)i)
Use the Euler's formula
=cos((15pi)/8) + isin((15pi)/8) Answer.