How do you solve the inequality abs(3x-4)<20|3x4|<20?

2 Answers
Jan 19, 2016

x in(-16/3,8)x(163,8)

Explanation:

Removing the abs the equation became:

-20<3x-4<2020<3x4<20

This is equivalent to the follow system:

:.{ ((3x-4)> -20), ((3x -4)<20) :}

{ (3x> -20+4), (3x <20+4) :}

{ (3x> -16), (3x <24) :}

{ (x> -16/3), (x <8) :}

Drawing the inequality system graph we have to pick up the x interval where both the lines are continuos:

enter image source here

:.x in(-16/3,8)

Jan 26, 2016

(-16/3, 8)

Explanation:

|3x-4|<20 is equivalent to

3x-4<20 and -(3x-4)<20

In the second expression if we multiply both parcels by -1, we must invert the signal:

3x-4<20 and 3x-4> -20

Now, we add 4 in both sides of the inequality:

3x<24 and 3x> -16

Then we divide by 3

x<8 and x> -16/3

so the solution is the interval

(-16/3, 8)