What is the arc length of f(x)=((4x^5)/5) + (1/(48x^3)) - 1 f(x)=(4x55)+(148x3)−1 on x in [1,2]x∈[1,2]?
1 Answer
Apr 4, 2016
Explanation:
L=int_1^2 sqrt(1+(4x^4-1/(16x^4))^2)*dxL=∫21√1+(4x4−116x4)2⋅dx
L=int_1^2 sqrt(1+16x^8-1/2+1/(256x^8))*dxL=∫21√1+16x8−12+1256x8⋅dx
L=int_1^2 sqrt(16x^8+1/2+1/(256x^8))*dxL=∫21√16x8+12+1256x8⋅dx
L=int_1^2 sqrt((4x^4+1/(16x^4))^2)*dxL=∫21√(4x4+116x4)2⋅dx
L=int_1^2 (4x^4+1/(16x^4))*dxL=∫21(4x4+116x4)⋅dx
L=(4/5x^5-1/(48x^3))|_1^2L=(45x5−148x3)∣∣∣21
L=(4*32)/5-1/(48*8)-(4/5-1/48)L=4⋅325−148⋅8−(45−148)
L=(128-4)/5-(1-8)/384=124/5+7/384=(47616+35)/1920L=128−45−1−8384=1245+7384=47616+351920
L=47651/1920~=24.818L=476511920≅24.818