If #h(x) = 1/2x^4 - 3x^3#, what is #h(4)#? Algebra Graphs of Linear Equations and Functions Function Notation and Linear Functions 1 Answer Jose Rop · Stefan V. May 11, 2016 #-64# Explanation: #h(4) = 1/2 * (4 * 4 * 4 * 4) - 3(4 * 4 * 4)# #=128-192# #=-64# Answer link Related questions What is an example of a linear equation written in function notation? What is a function? How do you evaluate #f(4)# given the function #f(x)=2x-6#? How do you evaluate #g(-1)# given the function #g(t)=-5t+1#? How do you write linear equations in function notation? How do you rewrite #9x+3y=6# in function notation? How do you evaluate #f(p)# given the function #f(x)=6x-36#? What are linear functions? How do you evaluate #f(0)# given the function #f(x)=\frac{5(2-x)}{11}#? How do you evaluate #f(-1)# given the function #f(t)=\frac{1}{2} t^2+4#? See all questions in Function Notation and Linear Functions Impact of this question 3416 views around the world You can reuse this answer Creative Commons License