How do you evaluate e7π6ie19π8i using trigonometric functions?

1 Answer
Nov 4, 2016

2sin(29π24)e(25π24)i

Explanation:

we know euler's theorem states that eiθ=cosθ+isinθ
so,e7π6ie19π8i
=cos(7π6)+isin(7π6)(cos(19π8)+isin(19π8))
=cos(7π6)cos(19π8)+i(sin(7π6)sin(19π8))
now cosccosd=2sin(c+d2)sin(dc2)
sincsind=2cos(c+d2)sin(cd2)
so we get cos(7π6)cos(19π8)
=2sin(85π24)sin(29π24)
again similarly we get i(sin(7π6)sin(19π8))
=2icos(85π24)sin(29π24)
so,e7π6e19π8=2sin(29π24)(sin(85π24)icos(85π24))
=2sin(29π24)[sin(2π+(37π24))icos(2π+(37π24))]
=2sin(29π24)[sin(37π24)icos(37π24)]
=2sin(29π24)[cos(25π24)+isin(25π24)]
=2sin(29π24)e(25π24)i.