How do you add (8-8i)+(-7-i) in trigonometric form?

1 Answer
Feb 15, 2017

1-9i = sqrt(82)(cos(arctan(-9)) + i sin ((arctan (-9)))

Explanation:

Add them in rectangular form (a + bi) and then convert to trigonometric form:

  1. Combine the like terms: (8 + -7) + (-8i + -i) = 1-9i
  2. r = sqrt (1^2 + (-9)^2) = sqrt (82)
  3. theta = arctan(b/a) = arctan (-9/1) = arctan(-9)
  4. z = r(cos theta + i sin theta)
    = sqrt(82)(cos(arctan(-9)) + i sin ((arctan (-9)))