How do you integrate #(2x+1 )/ ((x-2)(x^2+4))# using partial fractions?
1 Answer
Explanation:
We want to find
We multiply both sides by
Then, the equation would become
We can also substitute
Knowing
After substituting the values in and simplifying, we have successfully decomposed the fraction to
We can integrate the separate fractions one by one:
#\int\ 5/(8(x-2))\ dx#
#=5/8\int\ 1/u\ du# (substituting#u=x-2# and#du=dx# )
#=5/8ln|u|+C#
#=5/8ln|x-2|+C# (substituting#u=x-2# back)
#\int\ (-5x+6)/(8(x^2+4))\ dx#
#=-5/8\int\ (x-6/5)/(x^2+4)\ dx#
#=-5/8(\int\ x/(x^2+4)\ dx-\int\ (6/5)/(x^2+4)\ dx)#
#=-5/8(\int\ x/(2xu)\ du-\int\ (6/5)/(x^2+4)\ dx)# (substituting#u=x^2+4# and#du=2x\ dx# )
#=-5/8(1/2ln|u|+C-\int\ (6/5)/(x^2+4)\ dx)#
#=-5/8(1/2ln|x^2+4|+C-\int\ (6/5)/(x^2+4)\ dx)# (substituting#u=x^2+4# back)
#=-5/8(1/2ln|x^2+4|+C-6/5\int\ 1/(x^2+4)\ dx)#
#=-5/8(1/2ln|x^2+4|+C-6/5\int\ 1/(4(tan^2(\theta)+1))\ 2sec^2(\theta)\ d\theta)# (substituting#\2tan(\theta)=x# and#dx=2sec^2(\theta)\ d\theta# )
#=-5/8(1/2ln|x^2+4|+C-6/5\int\ 1/(4sec^2(\theta))\ 2sec^2(\theta)\ d\theta)#
#=-5/8(1/2ln|x^2+4|+C-3/5\theta)#
#=-5/8(1/2ln|x^2+4|+C-3/5tan^-1(x/2))# (since#x/2=tan(\theta)# )
#=3/8tan^-1(x/2)-5/16ln|x^2+4|+C#
Finally, we add the two integrals to get the final answer: