Question #d53c9

2 Answers
Apr 7, 2017

1/4 x^4 - 1/2x^2 + 1/2 ln |x^2+1| + C

Explanation:

Using long division: (x^5)/(x^2+1) = x^3-x + x/(x^2+1)

So int (x^5)/(x^2+1) dx = int (x^3-x) dx + int x/(x^2+1) dx

For the last piece, let u = x^2+1, du = 2x dx

int (x^5)/(x^2+1) dx = 1/4 x^4 - 1/2x^2 + 1/2 int (du)/u

int (x^5)/(x^2+1) dx = 1/4 x^4 - 1/2x^2 + 1/2 ln |x^2+1| + C

Simplified:

int (x^5)/(x^2+1) dx = 1/4 x^2(x^2-2)+ 1/2 ln |x^2+1| + C

Apr 7, 2017

intx^5/(x^2+1)dx = x^4/4 -x^2/2 + 1/2ln(x^2+1)+C

Explanation:

Given:

intx^5/(x^2+1)dx =

Let u = x^2", then "du = 2xdx:

1/2intu^2/(u+1)du=

1/2int(u^2+u-u)/(u+1)du=

1/2int(u^2+u)/(u+1)-(u)/(u+1)du=

1/2intu -(u)/(u+1)du=

1/2intu -(u+ 1 - 1)/(u+1)du=

1/2intu -(u+ 1)/(u+1) + 1/(u+1)du=

1/2intu -1 + 1/(u+1)du=

1/2(u^2/2 -u + ln|u+1|)+ C=

Reverse the substitution:

1/2(x^4/2 -x^2 + ln(x^2+1))+ C=

x^4/4 -x^2/2 + 1/2ln(x^2+1)+C