How do you multiply e3π8ie3π2i in trigonometric form?

2 Answers

=e(31π8)i

Explanation:

e(3π8)ie3(π2)i
e(3π8)ie(7π2)i

e(3π8)ie(28π8)i
e(3π+28π8)(i+i)=e(31π8)i

cos(π8)isin(π8) or (1)78

Explanation:

Are you sure its e3π2 not e3π2 because it makes more sense when you write it in trig form.

Remember this beauty?
eiπ=1
That was Euler's identity. This is the generalized formula:
eix=cosx+isinx

Therefore, we can break down the two terms involved:

ei38π=cos(3π8)+isin(3π8)

ei72π=cos(7π2)+isin(7π2)=0+i(1)=i

ei38π=(ei32π)14=(i)14
ei38πei32π=(ei32π)14ei72π=(ei32π)54=(i)54=(1)78

Or

ei38πei72π=sin(3π8)icos(3π8)

=cos(π8)isin(π8)