How do you integrate int (x-3x^2)/((x+9)(x-5)(x-7)) using partial fractions?

1 Answer
Oct 24, 2017

ln(((x+9)^(9/8)(x-5)^(5/2))/(x-7)^(7/4)) + C

Explanation:

First you'll need to split up the integrand into partial fractions.

(x-3x^2)/((x+9)(x-5)(x-7)) = A/(x+9)+B/(x-5)+C/(x-7)

x-3x^2 = A(x-5)(x-7) + B(x+9)(x-7) + C(x+9)(x-5)

We'll substitute in the roots, x=-9,5,7, to find each of the numerator constants.

x = -9

(-9)-3xx(-9)^2 = A xx (-9-5) xx (-9-7)

-252 = A xx -14 xx -16

A = 9/8

x = 5

(5)-3(5)^2 = B xx (5+9) xx (5-7)

-70 = B xx 14 xx -2

B = 5/2

x = 7

(7)-3(7)^2 = C xx (7 + 9) xx (7-2)

-140 = C xx 16 xx 5

C = -7/4

Therefore, we now have that

(x-3x^2)/((x+9)(x-5)(x-7)) = (9/8)/(x+9)+(5/2)/(x-5)-(7/4)/(x-7)

Integrating a/(x+b) gives you aln(x+b), so

int (9/8)/(x+9)+(5/2)/(x-5)-(7/4)/(x-7)dx =

9/8ln(x+9) + 5/2ln(x-5) - 7/4ln(x-7) + C

= ln(((x+9)^(9/8)(x-5)^(5/2))/(x-7)^(7/4)) + C