How do you divide 7+4i1+i in trigonometric form?

1 Answer
Jan 12, 2018

(652)e(arctan(47)3π4)i

Explanation:

7+4i1+i=z1z2

ρ1=72+42=49+16=65
θ1=arctan(47)

ρ1=12+12=1+1=2
θ1=arctan(11)=arctan(1)=(3π4),

z1z2=ρ1ρ2e(θ1θ2i)

z1z2=652earctan(47i)3π4i

z1z2=(652)e(arctan(47)3π4)i

z1z2~5.701e1.837i