How do you factor #x^3+6x^2-5x-30#?
2 Answers
Apr 15, 2018
Explanation:
rearrange the equation
take out the common factors
compress the terms
solve for
Apr 15, 2018
Explanation:
#color(blue)"factor by grouping the terms"#
#=color(red)(x^2)(x+6)color(red)(-5)(x+6)#
#"take out the "color(blue)"common factor "(x+6)#
#=(x+6)(color(red)(x^2-5))#
#x^2-5" can be factored using "color(blue)"difference of squares"#
#a^2-b^2=(a-b)(a+b)#
#x^2-5=x^2-(sqrt5)^2#
#"with "a=x" and "b=sqrt5#
#rArrx^2-5=(x-sqrt5)(x+sqrt5)#
#rArrx^3+6x^2-5x-30=(x+6)(x-sqrt5)(x+sqrt5)#