How do you add #(7+5i)+(2-4i)# in trigonometric form?

1 Answer
Jun 13, 2018

#sqrt74cos(0.6202)+sqrt20cos(5.1760)+i(sqrt74sin(0.6202)+sqrt20sin(5.1760))#
#9+i#

Explanation:

#z=a+bi=r(costheta+isintheta)#

#r=sqrt(a^2+b^2)#
#theta=tan^-1(b/a)#

#r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))#

#r_1=sqrt(7^2+5^2)=sqrt(49+25)=sqrt74#
#r_2=sqrt(2^2+4^2)=sqrt(4+16)=sqrt20#

#theta_1=tan^-1(5/7)~~0.6202^c#
#theta_2=tan^-1(-2)~~-1.1071^c#

However, as #2-4i# is in quadrant 4, we need to add #2pi# to get a positive angle variant.

#theta_2=2pi+tan^-1(-2)~~5.1760^c#

#sqrt74cos(0.6202)+sqrt20cos(5.1760)+i(sqrt74sin(0.6202)+sqrt20sin(5.1760))#
#7+2+i(5-4)#
#9+i#

Proof:

#7+5i+2-4#
#(7+2)+i(5-4)#
#9+i#