How do you find the arc length of the curve #y=(5sqrt7)/3x^(3/2)-9# over the interval [0,5]?
1 Answer
Explanation:
The arc length of a function
#s=int_a^bsqrt(1+(dy/dx)^2)color(white).dx#
Here:
#y=(5sqrt7)/3x^(3/2)-9#
#dy/dx=(5sqrt7)/3(3/2x^(1/2))=(5sqrt7)/2x^(1/2)#
Then the arc length desired is:
#s=int_0^5sqrt(1+((5sqrt7)/2x^(1/2))^2)color(white).dx#
#s=int_0^5sqrt(1+175/4x)color(white).dx#
Let
#s=4/175int_1^(879//4)u^(1/2)color(white).du#
Integrating using the power rule for integration:
#s=4/175(2/3u^(3/2))|_1^(879//4)#
#s=8/525((879/4)^(3/2)-1^(3/2))#
#s=8/525(879^(3/2)/8-1)#
#s=1/525(879^(3/2)-8)#