How do you find the arc length of the curve y=(5sqrt7)/3x^(3/2)-9 over the interval [0,5]?
1 Answer
Jun 16, 2018
Explanation:
The arc length of a function
s=int_a^bsqrt(1+(dy/dx)^2)color(white).dx
Here:
y=(5sqrt7)/3x^(3/2)-9
dy/dx=(5sqrt7)/3(3/2x^(1/2))=(5sqrt7)/2x^(1/2)
Then the arc length desired is:
s=int_0^5sqrt(1+((5sqrt7)/2x^(1/2))^2)color(white).dx
s=int_0^5sqrt(1+175/4x)color(white).dx
Let
s=4/175int_1^(879//4)u^(1/2)color(white).du
Integrating using the power rule for integration:
s=4/175(2/3u^(3/2))|_1^(879//4)
s=8/525((879/4)^(3/2)-1^(3/2))
s=8/525(879^(3/2)/8-1)
s=1/525(879^(3/2)-8)