How do you use partial fraction decomposition to decompose the fraction to integrate (z+1)/(z^2(z^2+4))?

1 Answer

1/8 ln (z^2/(z^2+4))-1/(4z)-1/8tan^-1(z/2)+C

Explanation:

While one could use the standard approach of beginning with

(z+1)/(z^2(z^2+4)) = A/z + B/z^2+(Cz+D)/(z^2+4)

it will be faster in this case to note that

1/(z^2(z^2+4)) = 1/4(1/z^2-1/(z^2+4))

and thus

(z+1)/(z^2(z^2+4)) = (z+1)/4(1/z^2-1/(z^2+4))

qquadqquad =1/4((z+1)/z^2-(z+1)/(z^2+4))

qquadqquad = 1/4(1/z+1/z^2-(z+1)/(z^2+4))

Thus

int (z+1)/(z^2(z^2+4)) dz = int 1/4(1/z+1/z^2-(z+1)/(z^2+4))dz

qquad = 1/4 log z-1/(4z) - 1/8 ln (z^2+4)-1/8 tan^-1(z/2)+C

qquad= 1/8 ln (z^2/(z^2+4))-1/(4z)-1/8tan^-1(z/2)+C