You cannot cross multiply when you have an inequality
The inequality is
∣∣∣52x−1∣∣∣≥∣∣∣1x−2∣∣∣
⇔, 5|2x−1|≥1|(x−2)|
⇔, 5|2x−1|−1|(x−2)|≥0
There are 2 points to consider
2x−1=0, ⇒, x=12 and
x−2=0, ⇒, x=2
There are 3 intervals to consider
I1=(−∞,12) and I2=(12,2) and I3=(2,+∞)
In the first interval I1, we have
5−2x+1−1−x+2≥0
5(2−x)−1(1−2x)(1−2x)(2−x)≥0
10−5x−1+2x(1−2x)(2−x)≥0
9−3x(1−2x)(2−x)≥0
3(3−x)(1−2x)(2−x)≥0
Let f(x)=3(3−x)(1−2x)(2−x)
Solving this equation with a sign chart
aaaaxaaaa−∞aaaaaaa12aaaaaa2aaaa3aaaa+∞
aaaa1−2xaaaa+aaaa∣∣aaa−aaa−aaa−
aaaa2−xaaaa+aaaa#color(white)(aaaa)+#aa∣∣a−aaa−
aaaa3−xaaaa+aaaa#color(white)(aaaa)+#aaaa+a0a−
aaaaf(x)aaaaa+aaaa∣∣aaaa−a||∣∣color(white)(a)+color(white)(a)0color(white)(a)-
Therefore,
In the interval I_1, f(x)>=0,when x in (-oo,1/2)
In the second interval I_2=(1/2,2)
5/(2x-1)-1/(-x+2)>=0
<=>, (5(2-x)-1(2x-1))/((2x-1)(2-x))>=0
<=>, (10-5x-2x+1)/((2x-1)(2-x))>=0
<=>, (11-7x)/((2x-1)(2-x))>=0
Let g(x)=(11-7x)/((2x-1)(2-x))
Solving this inequality with a sign chart,
g(x)>=0 when x in (1/2,11/7]
In the third interval I_2=(2, +oo)
5/(2x-1)-1/(x-2)>=0
<=>, (5(x-2)-1(2x-1))/((2x-1)(x-2))>=0
<=>, ((5x-10-2x+1))/((2x-1)(x-2))>=0
<=>, ((3x-9))/((2x-1)(x-2))>=0
<=>, (3(x-3))/((2x-1)(x-2))>=0
h(x)=(3(x-3))/((2x-1)(x-2))
Solving this inequality with a sign chart,
h(x)>=0 when x in [3,+oo)
graph{5/(|2x-1|)-1/(|x-2|) [-14.24, 14.24, -7.12, 7.12]}