How do you evaluate e3π2ie13π8i using trigonometric functions?

1 Answer
Jul 27, 2018

0.38270.0761i, IV Quadrant.

Explanation:

eiθ=cosθ+isinθ

e(3π2)i=cos(3π2)+isin(3π2)

>i, III Quadrant

e(13π8)i=cos(13π8)+isin(13π8)

0.38270.9239i, IV Quadrant.

e(3π2)ie(13π8)i=0.3827i+0.9239i

0.38270.0761i, IV Quadrant.