How do you divide 1+4i37i in trigonometric form?

1 Answer
Jul 30, 2018

0.5345+0.0862i, II Quadrant

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=1+4i,z2=37i

r1=12+422)=17

θ1=tan1(41)104.0362, II Quadrant

r2=32+(7)2=58

θ2=tan1(73)293.1986, IV Quadrant

z1z2=1758(cos(104.0362293.1986)+isin(104.0362293.1986))

0.5345+0.0862i, II Quadrant