How do you evaluate e^( ( 23 pi)/8 i) - e^( ( 19 pi)/6 i) using trigonometric functions?

1 Answer
Aug 5, 2018

color(green)(e^((23pi)/8i) - e^((19pi)/6i) = -0.0579 + 0.8827 i, " IIQuadrant"

Explanation:

Trigonometric form of e^ (ix), using Euler's Equation, is given by

e^ (ix) = cos x + i sin x

e^((23pi)/8i) = ( cos((23pi)/8) + i sin((23pi)/8))

=> -0.9239 + i 0.3827, " II Quadrant"

e^((19pi)/6i) = cos((19pi)/6) + i sin((19pi)/6))

=> -0.866 - i 0.5, " III Quadrant"

e^((23pi)/8i) - e^((19pi)/6i) = -0.9239 + i 0.3827 + 0.866 + i 0.5

color(green)(e^((23pi)/8i) - e^((19pi)/6i) = -0.0579 + 0.8827 i, " IIQuadrant"