How do you add (-6+i)+(9+3i) in trigonometric form?

1 Answer
Aug 6, 2018

color(maroon)((-6 + i) + (9 + 3i) = 3 + 4 i, " I Quadrant"

Explanation:

(-6 + i) + (9 + 3i)

z = x + i y

z = r (cos theta + i sin theta)

r = |z| = |sqrt(x^2 + y^2)|

r_1 = sqrt(-6^2 + 1^2) = sqrt37

theta_1 = arctan (y/x) = tan^-1 (1/-6) = 170.5377^@, " II Quadrant"

r_2 = sqrt(9^2 + 3^2) = sqrt90

theta_2 = arctan (y/x) = tan^-1 (3/9) = 18.4349^@, " I Quadrant"

(-6 + i) + (9 + 3i) = sqrt37(cos 170.5377 + sin170.5377) + sqrt90 (cos 18.4349 + sin 18.4349)

=> sqrt37 cos 170.5377 + sqrt90 cos 18.4349 + i (sqrt37 sin 170.5377 + sqrt90 sin 18.4349)

=> -6 + 9 + 1 i + 3 i

color(maroon)((-6 + i) + (9 + 3i) = 3 + 4 i, " I Quadrant"