How do you divide 6i+5i+2 in trigonometric form?

1 Answer

6i+5i+2=615cis(tan1(179))

Explanation:

6i+5i+2=f(r,θ)
z1=6i+5
r1=(6)2+52=36+25=61
θ1=tan1(56)=2πtan1(56)
z2=i+2
r2=12+22=1+4=5
θ2=tan1(21)=2π+tan12
Thus,
6i+5i+2=61,(2πtan1(56))5,(2π+tan12)
By De-Moivre's Theorem,

61,(2πtan1(56))5,(2π+tan12)
=615×cis(2πtan1(56)(2π+tan12))

=615cis(tan1(56)tan12)
=615cis((tan1(56)+tan12))

tan1(56)+tan12=tan1(56+2156×2)

=tan1(5×1+2×61×65×3)=tan1(5+12615)

=tan1(179)
Thus,
6i+5i+2=615cis(tan1(179))