Question #64b2f

1 Answer
Mar 23, 2016

#x=1.3083+-0.6324i#

Explanation:

To solve for #x# in the quadratic equation

#y=-0.7428x^2+1.9437x-1.569#

Use the quadratic formula, which solves for #x# in the quadratic equation

#y=ax^2+bx+c#

where

#x=(-b+-sqrt(b^2-4ac))/(2a)#

In the given quadratic, we see that

#{(a=-0.7428),(b=1.9437),(c=-1.569):}#

Thus,

#x=(-1.9437+-sqrt(1.9437^2-4(-0.7428)(-1.569)))/(2(-0.7428))#

#x=(-1.9437+-sqrt(-0.8838))/(-1.4856)#

Bring the negative out as #i#. Take the square root of #0.8838#.

#x=(-1.9437)/(-1.4865)+-0.9401/(-1.4856)i#

#x=1.3083+-0.6324i#