How do you simplify the following?

  1. (1-sin^2 x)/(sin x + 1)1sin2xsinx+1

  2. (tan x)(1-sin^2 x)(tanx)(1sin2x)

1 Answer
Mar 26, 2016
  1. (1-sin^2 x)/(sin x + 1) = 1 - sin x1sin2xsinx+1=1sinx when x != (3pi)/2 + 2kpix3π2+2kπ

  2. (tan x)(1 - sin^2 x) = 1/2 sin 2x(tanx)(1sin2x)=12sin2x when x != kpixkπ

Explanation:

Example 1.

Use the difference of squares identity:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

with a = 1a=1, b = sin xb=sinx as follows:

(1-sin^2 x)/(sin x + 1) = ((1-sin x)color(red)(cancel(color(black)((1+sin x)))))/color(red)(cancel(color(black)((1+sin x)))) = 1 - sin x

with exclusion sin x != -1 (i.e. x != (3pi)/2+2kpi)

Example 2.

Use the following:

sin^2 x + cos^2 x = 1 in the form 1 - sin^2 x = cos^2 x

tan x = (sin x)/(cos x)

sin 2x = 2 sin x cos x

as follows:

(tan x)(1 - sin^2 x) =(sin x)/(cos x)*cos^2 x = sin x cos x = 1/2 sin 2x

with exclusion cos x != 0, i.e. x != kpi