How do you simplify the following?
-
(1-sin^2 x)/(sin x + 1)1−sin2xsinx+1
-
(tan x)(1-sin^2 x)(tanx)(1−sin2x)
-
(1-sin^2 x)/(sin x + 1)1−sin2xsinx+1 -
(tan x)(1-sin^2 x)(tanx)(1−sin2x)
1 Answer
-
(1-sin^2 x)/(sin x + 1) = 1 - sin x1−sin2xsinx+1=1−sinx whenx != (3pi)/2 + 2kpix≠3π2+2kπ -
(tan x)(1 - sin^2 x) = 1/2 sin 2x(tanx)(1−sin2x)=12sin2x whenx != kpix≠kπ
Explanation:
Example 1.
Use the difference of squares identity:
a^2-b^2 = (a-b)(a+b)a2−b2=(a−b)(a+b)
with
(1-sin^2 x)/(sin x + 1) = ((1-sin x)color(red)(cancel(color(black)((1+sin x)))))/color(red)(cancel(color(black)((1+sin x)))) = 1 - sin x
with exclusion
Example 2.
Use the following:
sin^2 x + cos^2 x = 1 in the form1 - sin^2 x = cos^2 x
tan x = (sin x)/(cos x)
sin 2x = 2 sin x cos x
as follows:
(tan x)(1 - sin^2 x) =(sin x)/(cos x)*cos^2 x = sin x cos x = 1/2 sin 2x
with exclusion