Question #59893 Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Cesareo R. Jul 25, 2017 =c0x+2c2−c3x+2+c1log(x−1)+c2log(x+2)+C Explanation: c0+c1x−1+c2x+c3(x+2)2−x3(x−1)(x+2)2=0 Solving for c0,c1,c2,c3 we have c0=2,c1=29,c2=−569,c3=−649 and then ∫x3(x−1)(x+2)2dx=∫(c0+c1x−1+c2x+c3(x+2)2)dx= =c0x+2c2−c3x+2+c1log(x−1)+c2log(x+2)+C Answer link Related questions How do I find the partial fraction decomposition of 2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of 1x3+2x2+x ? How do I find the partial fraction decomposition of x4+1x5+4x3 ? How do I find the partial fraction decomposition of x4x4−1 ? How do I find the partial fraction decomposition of t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral ∫t2t+4dt ? How do I find the integral ∫x−9(x+5)(x−2)dx ? How do I find the integral ∫1(w−4)(w+1)dw ? How do I find the integral ∫dxx2(x−1)2 ? How do I find the integral ∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 1234 views around the world You can reuse this answer Creative Commons License