How do you write the partial fraction decomposition of the rational expression 2x3+2x29x20(x2x6)(x+2)?

1 Answer
Aug 1, 2017

2x3+2x29x20(x2x6)(x+2)=2+1x33x+2+2(x+2)2

Explanation:

Before we express in partial fractions, ensure that the degree of numerator is less than that of denominator.

2x3+2x29x20(x2x6)(x+2)

= 2x3+2x29x20x3+x28x12

= 2+7x+4x3+x28x12

= 2+7x+4(x3)(x+2)(x+2)

= 2+7x+4(x3)(x+2)2

Now let 7x+4(x3)(x+2)2Ax3+Bx+2+C(x+2)2

or 7x+4(x3)(x+2)2=A(x+2)2+B(x3)(x+2)+C(x3)(x3)(x+2)2

if x=3, then 25A=25 i.e. A=1

if x=2, then 5C=10 i.e. C=2

and comparing coefficients of x2 on both sides

A+B+C=0 i.e. B=3

Hence

2x3+2x29x20(x2x6)(x+2)=2+1x33x+2+2(x+2)2