How do you complete the following division: (x^4 + x^3 - 5x^2 + 26x - 21)/(x^2 + 3x - 4)x4+x3−5x2+26x−21x2+3x−4?
1 Answer
Explanation:
Divide the numerator by the denominator using long division.
So,
We can now start the actual partial fraction decomposition process.
A/(x + 4) + B/(x- 1) = (3x -1)/((x+ 4)(x - 1))Ax+4+Bx−1=3x−1(x+4)(x−1)
A(x - 1) + B(x +4) = 3x - 1A(x−1)+B(x+4)=3x−1
Ax - A + Bx + 4B = 3x - 1Ax−A+Bx+4B=3x−1
(A + B)x + (4B - A) = 3x - 1(A+B)x+(4B−A)=3x−1
We now write a system of equations:
{(A + B = 3), (4B - A= -1):}
Solve:
B = 3 - A -> 4(3 - A) - A = -1
12 - 4A - A = -1
-5A = -13
A = 13/5
13/5 + B = 3
B = 2/5
Therefore, the partial fraction decomposition of
Hopefully this helps!