Question #0b19a

1 Answer

int ((2x+13)dx)/(x^2+6x+13) =
ln (x^2+6x+13)+7/2*arctan ((x+3)/2)+C

Explanation:

From the given int ((2x+13)dx)/(x^2+6x+13)

We can expand the integrand this way

int ((2x+13)dx)/(x^2+6x+13)=int((2x+6+7)dx)/(x^2+6x+13)

Then we split the fraction

int ((2x+13)dx)/(x^2+6x+13)=int((2x+6)dx)/(x^2+6x+13) +int((7)dx)/(x^2+6x+13)

We also know that x^2+6x+13=(x+3)^2+4
So that we can also write the integrals this way

int ((2x+13)dx)/(x^2+6x+13)=int((2x+6)dx)/(x^2+6x+13) +7*int(dx)/((x+3)^2+4)

Use now use the formulas

int (du)/u=ln u and int (du)/(u^2+a^2)=1/a*arctan(u/a)

it follows

int ((2x+13)dx)/(x^2+6x+13)=

ln (x^2+6x+13) +7/2*arctan ((x+3)/2)+C

God bless.....I hope the explanation is useful.