Find the derivative of cscx from first principles?

1 Answer
Jun 26, 2016

(dy)/(dx)=-cscxcotx

Explanation:

As y=cscx=1/sinx, y+deltay=1/sin(x+deltax)

Hence deltay=1/sin(x+deltax)-1/sinx

= (sinx-sin(x+deltax))/(sinxsin(x+deltax))

= -(sin(x+deltax)-sinx)/(sinxsin(x+deltax))

= -(2sin((x+deltax-x)/2)cos((x+deltax+x)/2))/(sinxsin(x+deltax))

= -(2sin((deltax)/2)cos(x+(deltax)/2))/(sinxsin(x+deltax)) and

(deltay)/(deltax)=-(2sin((deltax)/2)cos(x+(deltax)/2))/(deltaxsinxsin(x+deltax))

Hence (dy)/(dx)=Lt_(deltax->0)(deltay)/(deltax)

= Lt_(deltax->0)-(2sin((deltax)/2)cos(x+(deltax)/2))/(deltaxsinxsin(x+deltax))

= Lt_(deltax->0)(-sin((deltax)/2)/((deltax)/2))xxLt_(deltax->0)[(cos(x+(deltax)/2))/(deltaxsinxsin(x+deltax))]

= -1xxcosx/(sin^2x)=-1/(sinx)xxcosx/sinx=-cscxcotx