Question #c8b78

1 Answer
Feb 16, 2017

#d/dx( root(3)x ) = lim_(h->0) (root(3)(x+h)-root(3)(x))/h = 1/(3root(3)(x^2))#

Explanation:

Using the definition of derivative we have:

#d/dx( root(3)x ) = lim_(h->0) (root(3)(x+h)-root(3)(x))/h#

Now use the identity:

#(a^3-b^3) = (a-b)(a^2+ab+b^2)#

with #a= root(3)(x+h)# and #b=root(3)(x)#:

#( ( root(3)(x+h))^3 - (root(3)(x))^3) = (root(3)(x+h)-root(3)(x) )( root(3)((x+h)^2)+ root(3)(x(x+h)) + root(3)(x^2))#

#( x+h) -x = (root(3)(x+h)-root(3)(x) )( root(3)((x+h)^2)+ root(3)(x(x+h)) + root(3)(x^2))#

#h= (root(3)(x+h)-root(3)(x) )( root(3)((x+h)^2)+ root(3)(x(x+h)) + root(3)(x^2))#

So:

#(root(3)(x+h)-root(3)(x) )/h = 1/( root(3)((x+h)^2)+ root(3)(x(x+h)) + root(3)(x^2))#

and then:

#lim_(h->0) (root(3)(x+h)-root(3)(x))/h = lim_(h->0) 1/( root(3)((x+h)^2)+ root(3)(x(x+h)) + root(3)(x^2)) = 1/(3root(3)(x^2))#