What is the derivative of e^(9x)?

1 Answer
Sep 4, 2016

9 e^(9 x)

Explanation:

We have: e^(9 x)

This expression can be differentiated using the "chain rule".

Let u = 9 x => u' = 9 and v = e^(u) => v' = e^(u):

=> (d) / (dx) (e^(9 x)) = 9 cdot e^(u)

=> (d) / (dx) (e^(9 x)) = 9 e ^(u)

We can now replace u with 9 x:

=> (d) / (dx) (e^(9 x)) = 9 e^(9 x)