Question #1a66a

1 Answer
Jan 6, 2017

Arc Length = ln (sqrt(2)+1 )) = 0.8813137...

Explanation:

The Arc Length for a Curve y=f(x) is given by

L=int_alpha^beta sqrt(1+(dy/dx)^2) \ dx =int_alpha^beta sqrt(1+(f'(x))^2) \ dx

So in this problem we have

y=ln(secx) => dy/dx=tanx

So the Arc Length is;

L=int_0^(pi/4) sqrt(1+tan^2x) \ dx
\ \ \=int_0^(pi/4) sqrt(sec^2x) \ dx
\ \ \=int_0^(pi/4) secx \ dx
\ \ \=[ ln | secx+tanx | ]_0^(pi/4)
\ \ \=ln | sec(pi/4)+tan(pi/4) | - ln | sec(0)+tan(0) |
\ \ \=ln | sqrt(2)+1 | - ln | 1+0 |
\ \ \=ln (sqrt(2)+1 ) - ln 1
\ \ \=ln (sqrt(2)+1 ))
\ \ \=0.8813137...