Evaluate the integral? : int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx43x23x+6x(x2)(x1)dx

1 Answer
Dec 13, 2016

int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = 12ln2 -7ln343x23x+6x(x2)(x1)dx=12ln27ln3

Explanation:

We first need to find the partial fraction decomposition of the integrand, which will be of the form;

\ \ \ \ \ (x^2-3x+6)/(x(x-2)(x-1)) -= A/x + B/(x-2) + C/(x-1)
:. (x^2-3x+6)/(x(x-2)(x-1)) = (A(x-2)(x-1) + Bx(x-1) + Cx(x-2)) /(x(x-2)(x-1))

And so:

:. x^2-3x+6 = A(x-2)(x-1) + Bx(x-1) + Cx(x-2)

We can easily find the constants A,B,C by setting x to the specific values that make the denominator 0 or by comparing coefficients. (With practice this can be done instantly using the "Cover Up" method).

Put x=0 => 6=A(-2)(-1) \ \ \ \ \ \ \ \ => A=3
Put x=2 => 4-6+6=B(2)(1) \ \ \ \ \ => B=2
Put x=1 => 1-3+6=C(1)(-1) => \ C=-4

So the integral can be written as:
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = int_3^4 3/x + 2/(x-2) -4/(x-1) dx

Which we can now integrate as we know that

d/dxln(ax+b)=a/(ax+b)

Hence,

int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = [3lnx+2ln|x-2| -4ln|x-1|]_3^4
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = (3ln4+2ln2 -4ln3)-(3ln3+2ln1-4ln2)
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = 3ln4+2ln2 -4ln3-3ln3-0+4ln2
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = 3ln4+6ln2 -7ln3
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = (2*3)ln2+6ln2 -7ln3
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx = 12ln2 -7ln3
int_3^4 (x^2-3x+6)/(x(x-2)(x-1)) dx ~~ 0.627480146042576