Question #d7237

1 Answer
Mar 21, 2017

color(blue)("Thus the sum must be converging")Thus the sum must be converging
color(blue)(lim_(n->oo) s=30xx5/3=50)

color(blue)(s=sum_(i=1to oo)30(2/5)^(i-1) )

Explanation:

a_1=30r^0 ->30r^(1-1)

a_2=30r^1->30r^(2-1)

a_3=30r^2->30r^(3-1)

As r=2/5 then r^i is decreasing as i is increasing

Thus 30r^i is decreasing as i is increasing

color(blue)("Thus the sum must be converging")
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Set the sum to be s

s=30+30(2/5)+30(2/5)^2+30(2/5)^3+.. +30(2/5)^n

s(2/5)=30(2/5)+30(2/5)^2+..+30(2/5)^n+30(2/5)^(n+1)

s(1-2/5)=30-30(2/5)^(n+1) = 30[1-(2/5)^(n+1)]

s= 30xx[1-(2/5)^(n+1)]/(1-2/5)

As this is an infinite series we have

lim_(n->oo) s=30xx(1-0)/(3/5)

color(blue)(lim_(n->oo) s=30xx5/3=50)

color(blue)(s=sum_(i=1to oo)30(2/5)^(i-1) )