Question #898f1

1 Answer
May 4, 2017

Factoring the denominator using the pattern:

(a^3-b^3) = (a-b)(a^2b^0+a^1b^1+a^0b^2)(a3b3)=(ab)(a2b0+a1b1+a0b2)

:.

(x^3-27)=(x-3)(x^2+3x+9)

Decompose the fraction:

(5x^2 -2x +42)/(x^3 -27) = A/(x-3)+ (Bx)/(x^2+3x+9)+ C/(x^2+3x+9)

Multiply both sides by the denominator:

5x^2 -2x +42 = A(x^2+3x+9)+ (Bx)(x-3)+ C(x-3)

Let x = 3

81= 27A+ 0B + 0B

A = 3

5x^2 -2x +42 = 3(x^2+3x+9)+ (Bx)(x-3)+ C(x-3)

Let x = 0

42 = 3(9)+ C(-3)

-3C=15

C = -5

5x^2 -2x +42 = 3(x^2+3x+9)+ (Bx)(x-3)-5(x-3)

Let x = 1

5 -2 +42 = 3(1+3+9)+ (B)(-2)-5(-2)

-4 = -2B

B = 2

(5x^2 -2x +42)/(x^3 -27) = 3/(x-3)+ (2x)/(x^2+3x+9)- 5/(x^2+3x+9)

I checked this on a scratchpad.

Add Integral symbols:

int(5x^2 -2x +42)/(x^3 -27)dx = 3int1/(x-3)dx+ int(2x)/(x^2+3x+9)dx- 5int1/(x^2+3x+9)dx

Add 3 to the second integral and subtract 3 from the third:

int(5x^2 -2x +42)/(x^3 -27)dx = 3int1/(x-3)dx+ int(2x+3)/(x^2+3x+9)dx- 8int1/(x^2+3x+9)dx

The first two integrals become natural logarithms:

int(5x^2 -2x +42)/(x^3 -27)dx = 3ln|x-3|+ ln(x^2+3x+9)- 8int1/(x^2+3x+9)dx

The third integral is done by completing the square and a trigonometric substitution:

int(5x^2 -2x +42)/(x^3 -27)dx = 3ln|x-3|+ ln(x^2+3x+9)- (16sqrt(3))/9tan^-1(sqrt3/9(2x+2))+ C